您好,欢迎访问华测测量仪器经营部官方网站!

华测测量仪器经营部

西北地区测量仪器大型服务平台

高、 精、 准、全

24小时服务热线:

19829891268

RTK测量仪器使用方法,GPS应用注意事项

作者:admin 发布日期:2018/8/29 关注次数: 二维码分享

一、GPS测量的误差源和GPS定位网设计

1.GPS测量的误差源GPS测量误差按其生产源可分3大部分:GPS信号的自身误差,包括轨道误差(星历误差)SAAS影响;GPS信号的传输误差,包括太阳光压,电离层延迟,对流层延迟,多路径传播和由它们影响或其他原因产生的周跳;GPS接收机的误差,主要包括钟误差,通道间的偏差,锁相环延迟,码跟踪环偏差,天线相位中心偏差等。

2.GPS定位网的设计由GPS测量的误差源可以看出,GPS网的设计已免除了测角、边角同测和测边网等的传统要求。它不需要点间通视,也不需要考虑布设什么样的图形,也就更不需要考虑图形强度,不需要设置在制高点上(哪里需要就可以设置在哪里)。所以GPS网的设计是非常灵活的。但也应注意以下几个问题:

除了特殊需要,一般GPS基线长度相差不要过大,这样可以使GPS测量的精度分布均匀;

GPS网不要有开放式的网型结构,应构成封闭式闭合环和子环路;

应尽量消除多路径影响,防止GPS信号通过其他物体反射到GPS天线上,因此应避开强反射的地面,避开强反射环境,如山谷、山坡、建筑物等;

避开强电磁波干扰,设站应远离雷达站、电台、微波中继站等。

二、轨道误差(星历误差)SAAS影响;

1.轨道误差有关部门提供一定精度的。卫星轨道,以广播星历形式发播给用户使用,从而已知观测瞬间所观测卫星的位置,因而卫星轨道误差与星历误差是一个含义。卫星星历误差又等效为伪距误差。由于卫星轨道受地球和日、月引力场、太阳光压、潮汐等摄动力及大气阻力的影响,而其中有的是随机影响,而不能精密确定,使卫星轨道产生误差。目前,GPS卫星轨道误差的等效伪距误差(使用的卫星广播星历)4.2m。美国的SA政策和AS政策人为地使导航定位的精度降低,点位误差有时达到100m。控制网的静态GPS测量是利用载波相位测量,一般是由一个点设为已知点与一个待定点位同步观测GPS卫星,取得载波相位观测值,从而得出待定点位的坐标或两点间的坐标值,称为基线测量,短基线测量可以消除SA影响。动态测量解决SA影响的途径是实时差分定位(Real-timeDGPS),即在已知坐标点上布设基准点,通过基准站取得误差校正值,通过数据链实时传给导航定位的移动站,从而消除SA影响及两站的各种共同的误差,提高了移动站的导航定位精度。加滤波等处理的导航软件以及组合导航系统,已使导航定位精度差分距离在100km左右时达到亚米级,差分距离远于1500km时达到米级。

2.美国的SA技术与AS影响SA技术是选择可用性(Selective Availability)的简称,它是由两种技术使用户的定位精度降低,即δ(dither)技术和ε(epsilon)技术。δ技术是人为地施加周期为几分钟的呈随机特征的高频抖动信号,使GPS卫星频率10.23MHz加以改变,较后导致定位产生干扰误差,ε技术是降低卫星星历精度,呈无规则的随机变化,使得卫星的真实位置增加了人为的误差。AS技术(Anti-Spoofing)叫反电子欺骗技术,其目的是为了在和平时期保护其P码,不让非授权用户使用;战时防止敌方对精密导航定位作用的P码进行电子干扰。AS技术使得用C/A码工作的用户无法再和P码相位测量联合解算进行双频电离层精密测距修正,实际降低了用户定位精度。

3.确定GPS卫星轨道是减少星历误差和消除ε技术影响的根本方法利用区域性GPS跟踪网可以确定GPS卫星轨道。跟踪站地心坐标的误差对卫星轨道的影响是10倍或更大。因此,要提供优于2m精度的卫星轨道要求跟踪站地心坐标的精度优于0.1m。据介绍,采用强约束全球站松弛轨道的加权约束基准方法,可以得出优于5cm的相对坐标值,基本上可以满足我国现阶段区域性定轨的需要。如果,以我国现有GPS卫星跟踪网站,根据对各卫星记录的观测值,计算出对现有广播星历轨道根数的误差改正值,可以进一步计算长弧轨道的精密星历,从而能直接向用户播发精密星历,取代现有的ε技术降低精度以后的广播星历。

三、太阳光压对GPS卫星产生摄动加速度

rtk测量仪器

太阳光压对卫星产生摄动影响卫星的轨道,它是精密定轨的较主要误差源。太阳光压对卫星产生的摄动加速度受太阳与地球间距离的变化(地球轨道偏心距)而引起太阳辐射压力的变化,也与太阳光强度、卫星受到的照射面程和照射面积与太阳的几何关系及照射面的反射和吸收特性有关,由于卫星表面材料的老化、卫星姿态控制的误差等也使太阳光压发生变化。已有的太阳光压改正模型有:标准光压模型、多项式光压模型和ROCK4光压摄动模型,这几种光压模型精度基本上相当,可以满足1m定轨的要求。较近有人提出,用附加随机过程参数的方法或者对较长的轨道用一阶三角多项式逼近非模型化的长期项影响,可得到更理想的结果,甚至可以满足0.10.2m精度的定轨要求。

四、电离层的信号传播延迟电离层引起码信号传播延迟,它与沿卫星和用户接收机视线方向上的电子密度有关,在垂直方向上延迟值在夜间平均可达3m左右,白天可达15m,在低仰角情况下分别可达9m45m,在反常时期这个值还会加大。为了削弱电离层延迟所引起的定位精度损失,在长基准测量中用双频接收机采集GPS数据,对观测成果进行实时电离层延迟改正,可以获得很好的效果。对于单频接收机的用户,虽然可以用数学模型进行改正,但其残差仍然很大。也可以用提高卫星高度截止角减少其影响。在赤道和地极附近存在着严重的电离层赤道扰动和地极扰动。因而,利用双频GPS接收机观测,只适用于没有电离层扰动的中纬度地区来进行电离层改正。赤道扰动。较坏的电离层影响是在赤道附近。强烈影响大概在±10°以内的区域,此影响可延续至赤道两边的±30°。扰动一般在日落到午夜发生,延续到第二天黎明。它是由电离层中电子含量小规模无规律引起的,它有几米到几千米的波长,这些无规律的电子密度能够产生衍射和反射效应,接收的信号能使相位和振幅变异,它能妨碍GPS卫星信号跟踪,引起周跳。甚至基线在10km以内时,强烈的电子水平分布梯度能使模糊度解算不能进行。地极扰动。它没有赤道附近那么强烈,它的发生与磁暴活动有关,它主要是位于磁纬的69°~70°的极光带。在强磁暴期间,这些极光影响能延伸到中纬度地区,使周跳数增多。

五、对流层的信号传播延迟对流层延迟是电磁波信号通过对流层时其传播速度不同于真空中光速所引起的。分干大气分量和湿大气分量。在低仰角时它可以达到20m。其中干大气分量约占80%90%,可以用一定的模型大部分改正掉。温大气分量数值虽不大,但它随纬度和高度的变化呈现出很大的变化,而且随时间变化得非常快。由于空气中的水汽和干气相当难以预测,所以测量中往往测量的是干、湿分量混合体,故难以得到它的准确值。到目前为止已开发出来了许多计算湿对流层延迟的实用模型,但对流层延迟仍为主要误差源。对流层延迟与电离层延迟一样,主要影响天顶方向,由于它们的相关性,在短基线测量中会很好的消除,在长基线测量中采取双频接收机也能很好的减少其影响。对于对流层延迟,多用随机过程模拟和滤波方法进行参数估算及函数逼近方法模拟改正。好的数学模型改正,可以使基线天顶方向提高到水平方向(平面坐标)接近的水平。

六、多路径误差
多路径误差是指GPS信号射至其他的物体上又反射到GPS接收天线上,对GPS信号直接射至GPS接收天线上的直接波的干扰。多路径误差的大小,取决于反射波的强弱和用户天线抗衡反射波的能力。用户天线附设仰径板,当仰径板半径为40cm,天线高于1m2m,可抑制多路径影响。据大量资料的分析统计,多路径误差有以下危害:当边长小于10km时,主要误差源是天线的对中误差和多路径误差;

多路径误差对点位坐标的影响,在一般环境下可达59cm,在高反射环境下可达15cm;在高反射环境(城镇、水体旁、沙滩、飞机、舰船等)下,码信号受多径误差的影响,可导致接收机的相位失锁;

实践证明,观测值中的很多周跳都是由于多路径误差引起的。接收机天线附近的水平面、垂直面和斜面都会使GPS信号产生镜反射。天线附近的地形地物,例如道路、树木、建筑物、池塘、水沟、沙滩、山谷、山坡等都能构成镜反射。因此,选择GPS点位时应特别注意避开这些地形地物,采取提高天线高度和其他防止多路径误差的措施。

七、周跳

1.周跳和周跳的产生

周跳也称为失周。在精密的GPS相对定位中采用的观测值是相位观测值。相位观测值是接收机本机振荡产生的相位与接收到的卫星载波相位之差,在量测时,只能测到不足1周的小数部分(可准到0.01)。在理想条件下,接收机在锁住卫星后可保持跟踪,从而测出包括整数部分的相位变化量,因此每个历元的相位观测量与接收机到卫星的距离相差载波波长的一个整数倍,它是一个固定不变的值,该整数被称为整周模糊度,在解算时与其他参数一起求出。在实际观测条件下,接收机往往会由于某种原因(如卫星信号被挡住)对卫星短时间失去跟踪,在失去跟踪时间内相位的变化就不能被测出,称为失周或失锁,也称为周跳。在短距离GPS基线定位中,大气轨道误差基本被抵消,电离层和对流层延迟由于它们的相关性也消除了大部分影响,失周大小能保持较好的整数特性,较容易处理。产生周跳的原因,可分为外部原因和接收机质量问题。外部原因有:卫星信号被天线附近的地形地物短时间遮挡;动态测量时,由于载体运动速度太快或天线倾斜使信号丢失;由于多路径误差、电离层活动加剧、对流层延迟影响,使卫星信号的噪声偏大而产生周跳。GPS接收机质量不佳:卫星信号在接收机电路中受干扰,导致信号丢失;接收机内信号处理单元质量不佳;接收机内跟踪环路设计不理想,在某些环境下,将使相位发生180°或90°位移,从而产生周跳或1/4周跳。

2.周跳对点位坐标的影响
GPS相位测量中,观测数据中大于10周的周跳,在数据预处理时不难发现,可予以消除。然而,小于10周的周跳,特别是15周的周跳,以及半周跳和1/4周跳,不易发现,而对含有周跳的观测值周跳的影响视为观测的偶然误差,因而严重影响坐标的精度。
据拉查佩利的统计,一个周跳对经度、纬度、高程的影响为
ΔL=0.030.06m
ΔB0.100.18m
Δh0.140.16m
可见,即使只有一个卫星存在一个周跳,也会对所测点产生几厘米的误差。由于一个点位坐标是由4个以上卫星所确定的,故周跳对点位坐标的影响取决于以下因素:1.所测卫星的数量;2.所测卫星组成的几何图形;3.周跳影响各分量的大小和周跳次数。然而,即使只有一个卫星残存有一个周跳,也会使该次定位点位坐标有几毫米至几厘米的误差。由此可见,凡精度要求达到厘米级或分米级的GPS定位测量,都必须清除观测数据中的全部周跳。

3.周跳的探测和修复周跳的处理可分为2步:从观测数据中探测出全部周跳及将探测出的周跳加以全部修复。周跳的探测和修复都应在观测数据的预处理阶段进行。GPS相对定位中的失周处理是非常麻烦复杂的问题,因而应尽量避免周跳的发生。为此,对于仪器本身应通过仪器检定,在测定其质量确定可靠时才能用于测量作业,在测量作业中尤其应防止多路径的影响,避免失周的现象发生。对于周跳的探测和修复已有许多软件处理方法。也可以用组成单差、双差、3差和4差,根据组成高阶差数后,周跳被成倍放大,阶数越高,放大倍数越大的特性,能够快速有效地探测出周跳。先进的GPS接收机内装有“专用算法器”,可探测出大部分周跳,供处理数据时使用。避免和正确处理周跳,是提高GPS测量精度的关键。八、GPS测量仪器的质量检定

上面已经谈到GPS接收机常存在钟误差、通道间的偏差、锁相环延迟、码跟踪环偏差、天线相位中心偏差等。所以必须先了解仪器性能、工作特性及其可能达到的精度水平。它是制定GPS作业计划的依据,也是GPS定位测量顺利完成的重要保证。也就是说对GPS测量仪器必须先进行作业前的检验,没有检验的仪器是不能用于作业的。测量型GPS接收机实测检验项目有:天线相位中心稳定性测试;内部噪声水平测试;野外作业性能及不同测程精度指标的测试。频标稳定性检验和数据质量的评价;高低温性能测试。

九、单、双频接收机比较。

单频接收机的优点是:需要电子元件较大,对微处理器的要求较低,不需要昂贵的互相关器或Z码发生器,产品数量大,价格只有双频接收机的一半;

不易出故障,平均无故障时间(MBFT)约为8000h;

不受DODP码保密的限制;

边长短于10km时比双频结果精度高;

功耗低,体积小,重量轻,给外业带来方便。

缺点是:点间距离超过2030km时,定位精度受到电离层、对流层延迟的影响。凡点位相对精度要求2×10-6时,边长不宜超过2030km

在快速静态和动态测量中观测时间比双频接收机长。

双频接收机的优点是:可以基本消除电离层延迟对点位坐标的影响,点间距离可达1000km;

在快速静态和动态测量中观测时间比单频机短。单频机的优点则是双频机的主要缺点。十、结束语

对于GPS控制网基线测量,基线长度较短的情况下(10km左右,较大不超过2030km)GPS的轨道误差(星历误差),太阳光压影响及美国SA技术基本对测量精度不发生影响(它只能影响单点定位和长基线测量结果)。在作业过程中,在GPS接收机满足作业精度要求的情况下,测量的主要误差源是多路径误差、周跳和点位的对中误差。作业中应尽量避免它们的发生并减少其误差。电离层延迟和对流层延迟主要影响基线测量两点间的高差精度,两点间高差愈大影响也愈大。如果改正公式和参数不恰当,它可能产生每1m高差就有1mm的误差,即1mm/m(误差/高差)。电离层和对流层延迟对平面坐标(LBXY)影响甚微,几乎没有影响。电离层和对流层延迟具有相关性,基线愈短相关性越强,在短基线测量中它们的影响会有很好的消除。这就是边长短于10km时,单频结果比双频结果精度高的原因。

1GPS几何定位原理
测量学中有测距交会确定点位的方法。同理GPS卫星定位也是利用测距交会的原理确定点位。假设在地面上有三个无线电信号发射台,其坐标为已知,用户接收机在某一时刻采用无线电测距的方法,分别测得接收机至三个发射台的距离d1d2d3。只需以三个发射台为球心,以d1d2d3为半径做出三个定位球面,既可交会出用户接收机的空间位置。反之利用3颗以上的卫星已知位置又可交会出地面未知点(用户接收机)的位置。这就是GPS卫星定位的基本原理一空间距离,后方交会。
GPS定位中,GPS卫星是高速运动的卫星,其坐标值随时间在快速变化着。需要实时的由GPS卫星信号测量出测站点至卫星的距离,实时的由卫星的导航电文解算出卫星的坐标值,并进行测站点的定位。依据测距的原理,其定位原理与方法主要有伪距法定位、载波相位测量定位以及差分GPS定位等。对于待定点来说,根据其运动状态可将GPS定位分为静态定位和动态定位。静态定位指的是对于固定不动的待定点,将GPS接收机安置于其上,观测数分钟及至更长的时间,以确定该点的三维坐标,又叫绝对定位。若以两台GPS接收机分别置于两个固定不变的待定点上,则通过一定时间的观测,可以确定两个待定点之问的相对位置,又叫相对定位。而动态定位则至少有一台接收机处于运动状态,测定的是各观测时刻(观测历元)运动中的接收机的点位(绝对点位或相对点位)
2RTK
技术在公路测量中的应用
实时动态(RTK)定位有快速静态定位和动态定位两种测量模式,两种定位模式相结合,在公路工程中的应用可以覆盖公路勘测、施工放样、监理和GIS地理信息系统)前端数据采集。
2.1
快速静态定位模式要求GPs接收机在每一流动站上,静止的进行观测。在观测过程中,同时接收基准站和卫星的同步观测数据,实时解算整周未知数和用户站的三维坐标,如果解算结果的变化趋于稳定,且其精度已满足设计要求。便可以结束实时观测。一般应用在控制测量中,如控制网加密;若采用常规测量方法(如全站仪测量),受客观因素影响较大,在自然条件比较恶劣的地区实施比较困难,而采用RTK快速静态测量,可起到事半功倍的效果。单点定位只需要5~l~n(随着技术的不断发展,定位时间还会缩短),不及静态测量所需时间的五分之一,在公路测量中可以代替全站仪完成导线测量等控制点加密工作。

相对于常规的测量方法来讲,GPS测量有以下特点:2.1测站之间无需通视。测站间相互通视一直是测量学的难题。GPS这一特点,使得选点更加灵活方便。但测站上空必须开阔,以使接收GPS卫星信号不受干扰。2.2定位精度高。一般双频GPS接收机基线解精度为5mm+1ppm,而红外仪标称精度为5mm+5ppmGPS测量精度与红外仪相当,但随着距离的增长,GPS测量优越性愈加突出。大量实验证明,在小于50公里的基线上,其相对定位精度可达12×10-6,而在100500公里的基线上可达10-610-7

2.3观测时间短。观测时间短采用GPS布设控制网时每个测站上的观测时间一般在3040min左右,采用快速静态定位方法,观测时间更短。例如使用Timble4800GPS接收机的RTK法可在5s以内求得测点坐标。2.4提供三维坐标。GPS测量在精确测定观测站平面位置的同时,可以精确测定观测站的大地高程。2.5操作简便。GPS测量的自动化程度很高。目前GPS接收机已趋小型化和操作傻瓜化,观测人员只需将天线对中、整平,量取天线高打开电源即可进行自动观测,利用数据处理软件对数据进行处理即求得测点三维坐标。而其它观测工作如卫星的捕获,跟踪观测等均由仪器自动完成。2.6全天候作业。GPS观测可在任何地点,任何时间连续地进行,一般不受天气状况的影响。通过以上对GPS测量的应用事例的探讨,可以看出GPS在公路工程的控制测量上具有很大的发展前景:
第一GPS作业有着极高的精度。它的作业不受环境和距离限制,非常适合于地形条件困难地区、局部重点工程地区等。
第二GPS测量可以大大提高工作及成果质量。它不受人为因素的影响。整个作业过程全由微电子技术、计算机技术控制,自动记录、自动数据预处理、自动平差计算。
第三GPSRTK技术将彻底改变公路测量模式。RTK能实时地得出所在位置的空间三维坐标。这种技术非常适合路线、桥、隧勘察。它可以直接进行实地实时放样、中桩测量、点位测量等。
第四GPS测量可以极大地降低劳动作业强度,减少野外砍伐工作量,提高作业效率。一般GPS测量作业效率为常规测量方法的3倍以上。
第五GPS高精度高程测量同高精度的平面测量一样,是GPS测量应用的重要领域。特别是在当前高等级公路逐渐向山岭重丘区发展的形势下,往往由于这些地区地形条件的限制,实施常规的几何水准测量有困难,GPS高程测量无疑是一种有效的手段。通过GPS在测量中的应用,得到如下体会。
1GPS控制网选点灵活,布网方便,基本不受通视、网形的限制,特别是在地形复杂、通视困难的测区,更显其优越性。但由于测区条件较差,边长较短(平均边长不到300m),基线相对精度较低,个别边长相对精度大于110000。因此,当精度要求较高时,应避免短边,无法避免时,要谨慎观测。
2GPS接收机观测基本实现了自动化、智能化,且观测时间在不断减少,大大降低了作业强度,观测质量主要受观测时卫星的空间分布和卫星信号的质量影响。但由于各别点的选定受地形条件限制,造成树木遮挡,影响对卫星的观测及信号的质量,经重测后通过。因此,应严格按有并关要求选点,择较佳时段观测,注意手机、步话机等设备的使用。
3GPS测量的数据传输和处理采用随机软件完成,只要保证接收卫星信号的质量和已知数据的数量、精度,即可方便地求出符合精度要求的控制点三维坐标。但由于联测已知高程点较少(仅联测5个),致使的控制点高程精度较低。因此,要保证控制点高程的精度,必须联测足够的已知高程点。.

3 GPS测量的外业实施
1)选点 GPS测量测站点之间不要求一定通视,图形结构也比较灵活,因此,点位选择比较方便。但考虑GPS测量的特殊性,并顾及后续测量,选点时应着重考虑:每点较好与某一点通视,以便后续测量工作的使用;点周围高度角15°以上不要有障碍物,以免信号被遮挡或吸收;点位要远离大功率无线电发射源、高压电线等,以免电磁场对信号的干扰;点位应选在视野开阔、交通方便、有利扩展、易于保存的地方,以便观测和日后使用;选点结束后,按要求埋设标石,并填写点之记。
2)观测 根据GPS作业调度表的安排进行观测,采取静态相对定位,卫星高度角15°,时段长度45min,采样间隔10s。在3个点上同时安置3台接收机天线(对中、整平、定向),量取天线高,测量气象数据,开机观察,当各项指标达到要求时,按接收机的提示输入相关数据,则接收机自动记录,观测者填写测量手簿。

行业应用

CASE SHOW

快速通道 Express Lane

咨询热线

1982989126819829891268

邮箱:244386183@qq.com

QQ:244386183

  • 点击联系客服 点击联系客服
  • 立即咨询
  • 远程测绘仪器
  • QQ咨询
  • 咨询热线:
    19829891268
    • 二维码 扫一扫
      全国服务热线
      19829891268